

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-11 pp. 2360-2373 Journal homepage: <u>http://www.ijcmas.com</u>

Original Research Article

Pre and Post evaluation of Direct Antigen Coating - Enzyme-Linked Immuno Sorbent Assay (DAC-ELISA) for the Detection of BBrMV and CMV in Micro-propagation of Banana

Chetanchidambar N. Mangalore¹*, D. Sri Hari², B. V. K. Bhagavan³, Salomi Suneeta⁴, K. Uma Krishna⁵ and K. Ravindra Kumar⁶

¹Department of fruit science, College of Horticulture, Dr. YSR Horticultural University, Andhra Pradesh, India ²Dr. YSR Horticultural University, Andhra Pradesh, India ³Horticulture Research Station, Dr. YSR Horticultural University, Andhra Pradesh, India ⁴Department of Biochemistry, India ⁵Department of Statistics, College of Horticulture, Dr. YSR Horticultural University, Andhra Pradesh, India **Corresponding author*

ABSTRACT

Keywords

DAC-ELISA, banana, Kovvur Bontha, BBrMV, and CMV Plantains (*Musa* spp.)cv. Kovvur Bontha are one of the largest fruit crops produced mostly by the developing countries in the tropical and subtropical regions. Major propagule in banana cultivation is its vegetative suckers and the availability of uniform and disease-free suckers is the main problem faced by the farmers. The use of tissue culture planting material solved this problem to a greater extent by giving uniform growth and production. But there is no assurance for disease free material. Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA) was serological method to detect the presence of viral proteins. The main principle of DAC-ELISA is the detection of presence of viral protein through interaction between antigen from the coat protein with the rabbit anti-bodies. The outcome of the experiment shows that after eradication of the viral infected material at early stage will help in the production of viral free planting material. DAC-ELISA was the cheapest and easiest method to detect the virus so that we can get the good and disease-free planting material.

Introduction

Banana is one of the major fruit crops in India. It is also known as Adam's apple, the apple of paradise, and the poor man's apple. Banana is scientifically known as *Musa* *paradisiaca* L. belongs to the genus Musa of the family Musaceae of the order zingiberales. The modern edible banana is the cross between the two species *Musa accuminata* (AA) *x Musa balbisiana* (BB) which are desert type and cooking type respectively. Genome group in which A is dominant leads to the development of desert banana whereas genome group in which B is dominant leads to the development of dessert banana.

The origins of the banana are convoluted and complex. Whilst there is archaeological evidence of banana cultivation in New Guinea dating as far back as 8000 BC, other banana domestication projects have been found in Southeast Asia in the jungles of Malaysia, Indonesia, and the Philippines. Generally, it is agreed that bananas originated in Southeast Asia and the South Pacific around 8000 to 5000 BC. Bananas are believed to have been the world's first cultivated fruit. From Southeast Asia, the fruit was brought west by Arab conquerors and then carried to the New World by explorers and missionaries. Although bananas started to be traded internationally by the end of the fourteenth century, it wasn't until 1834 that the fruit was mass produced. From the late 1880s mass production of bananas exploded across the globe (Nelson et al., 2006).

It plays a critical role in the income security of many tropical and sub-tropical countries. In India, the crop is mainly grown in Tamil Nadu, Karnataka, Andhra Pradesh, Maharastra, Gujarat, Kerala, Assam, West Bengal, Bihar, Madhya Pradesh, Odisha, Chhattisgarh, and Uttar Pradesh with a total area of 8.8 lakh ha producing 30 lakh tonnes. In

Kerala, banana is grown in almost all districts with an area of 1.85 lakh ha and production of 11.6 lakh tones (NHB, 2018).

Banana fruit is botanically known as berry mostly parthenocarpic in nature (triploid cultivars) with rudimentary seeds. Desert type of banana contains less starch compared to cooking type. Cooking banana contains Fat (0.22 g), Protein (2 g), Carbohydrates (58 g), Fiber (3 g), Potassium (663 mg), Vitamin C (23 mg), Vitamin A (63 ug), Vitamin B-6 (0.29 mg), and Magnesium (57 mg).

Banana is majorly propagated through suckers especially sword suckers as banana is a parthenocarpy and containing rudimentary seeds. Suckers propagated plants have a bad reputation for transferring many harmful fungal, bacterial, and viral diseases from generation to generation and land to land (Kamat and Patel, 1951). CMV is the most widely spread virus, infecting banana crops which belongs to the genus Cucumo virus and it is transmitted by aphids. Management of these vectors are difficult (Teycheney et al., 2005). Viral diseases like banana bract mosaic virus (BBrMV) and cucumber mosaic virus (CMV) are the two major diseases that decrease the yield significantly and cause maximum economic losses to the farmers (Joshi snd Joshi, 1976).

Micropropagation is one of the major and effective measures to control the transfer of disease from generation to generation and land to land. It is one of the major means to avoid the transfer of viral diseases also.

Direct Antigen Coating - Enzyme-Linked Immuno Sorbent Assay (DAC-ELISA) is one of the effective serological ways to identify the presence of the virus in the suckers at earlier stages (Khan *et al.*, 2012). This helps in avoiding the transfer of dormant viral genetic material in the multiplication cycle of micropropagation (Capoor and Verma, 1968. And Kiranmai *et al.*, 1996).

The objective of this experiment is to confirm that early detection of the viruses like BBrMV and CMV in the mother helps to avoid the transfer of viral genetic material through different multiplication cycles of micropropagation and helps develop virusfree and quality planting material.

Materials and Methods

DAC-ELISA for detecting CMV was carried out in polystyrene plates (Cp-Star) using protocol described by Clark ad Adams, 1977. Healthy 120 plants were selected from the mother block for tissue culture and tagged for the assessment of viral diseases. 5g of sample was collected from the newly emerged third leaf from each plant was collected.

Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA) was serological method to detect the presence of viral proteins. The main principle of DAC-ELISA is the detection of presence of viral protein through interaction between antigen from the coat protein with the rabbit antibodies.

In this method 5g tissue sample was grinded with Coating Buffer (CB). After that, centrifuging at 5000rpm for 12 mins. After that 200 μ l of sample supernatant was loaded in 'Nuno-Maxisorp' plate with buffer and incubated at 37°C for 1 hour. Later ELISA plate was washed three times with washing buffer (PBS-T buffer). Then 200 μ l of blocking buffer solution was added to the plate and incubated at 37°C for 45 min - 1 hour. Again, the plates were washed with washing buffer for three times. Then these ELISA plates were added with primary antibodies at a dilution of 1:1000 vv⁻¹ and incubated for overnight at 4°C.

Next day, the plate was washed with PBS-T buffer and 200 μ l of secondary antibody at a dilution of 1:1000 vv⁻¹ was added and incubated for 2 hours. In the next step, plates were added 100 μ l of PNPP substrate into each well and cover the plates and incubate in dark at room temperature. The plates were read in ELISA plate reader. In the case of

positive reaction, the colorless substrate will turn to light yellow and then to deep-yellow color. Light yellow color indicates week positive and deep yellow indicates a strong positive. Samples showing A_{405} values twice or more than healthy sample reading are considered as virus positive. The results were expressed as percent virus present among the population.

This procedure was conducted before and after the micropropagation to confirms that there are no traces of transfer of viral protein from mother plants to daughter propagules (Fig. 1).

Results and Discussion

Several workers worked on DAC-ELISA for the banana in different genomic groups and concluded that it is an effective serological method for the detection of virus. In the present experiment, 120 plant samples were subjected to the detection of two major banana viruses namely banana bract mosaic virus (BBrMV) and cucumber mosaic virus (CMV) with DACELISA.

Among 120 samples, sample number 16 (1.105), 17 (1.127), 18(0.846), 19 (1.603), 22 (1.087), 32 (1.253), 39 (1.713), 44 (1.419), 49 (1.422), 53 (1.479), 71 (1.429), 80 (1.276), 81 (1.310), 83 (1.030), 87 (1.586), 91 (1.608), 97 (1.246), 100 (1.249), and 111 (1.450) are tested positive for banana bract mosaic virus (BBrMV). It comprises of 15.6% of the total selected mother plants. These plants are discarded before going for micro propagation. Remaining explant materials are virus and free from the good for micropropagation (Table 1).

The mother plants selected for micropropagation is also subjected to undergo DAC-ELISA test for detection of cucumber mosaic virus (CMV). Sample number 8 (1.556), 19 (1.580), 22 (1.110), 30

(1.139), 43 (1.422), 49 (1.581), 60 (1.031), 61 (1.875), 72 (1.521), 73 (1.536), 86 (1691), 90 (1.780), 92 (1.518), 106 (1.678), 107 (1.504), and 109 (1.297) are detected positive for CMV which resulted in 13.3% of total mother plants selected for the explant as presented in Table 1. 3.36% of the total plants are infected with both type of the viruses which are plant sample number 19 (1.603 and 1.580), 22 (1.087 and 1.110), and 49 (1.422 and 1.581).

Post micropropagation evaluation for the detection of virus for BBrMV and CMV had shown the total negative (100%) for the presence of dormant viral protein when the 120 random propagules are selected from micropropagated plant population and subjected for DAC-ELISA test.

The data presented in the Table 2 represents the absence of viruses in the plant propagules. Which confirms the using of DAC-ELISA was the effect measure for the detection and selection of virus free material for micropropagation and planting in farmers' field.

Results of this experiment stated that early detection of the virus in banana helps to eradicate the infected material from the propagules and production of disease-free planting material for the further field transplant. DAC-ELISA is the effective means to detect the presence of viral protein. Similar findings were reported by earlier workers (Kiranmai *et al.*, 1996; Dheepa and Paranjothi, 2010, Ali *et al.*, 2012, Khan *et al.*, 2011, Selvarajan *et al.*, 2011, Kouadio *et al.*, 2014, Khan *et al.*, 2012, Lepcha *et al.*, 2017)

Singh *et al.*, (1996) reported that the concentration of BBrMV was found to be higher in infected bract as compared to healthy leaf sheath which is in unison with

the result of the present study. Selvarajan, (2000) reported higher intense reaction for younger leaves when compared to older leaf. Many workers successfully detected BBrMV in infected banana by ELISA (Singh *et al.*, 1996; Reddy *et al.*, 2000; Thomas *et al.*, 2001; Kiranmai *et al.*, 2005; Selvarajan and Balasubramanian, 2008). DAC- ELSIA was found to be more economical method for the detection of BBrMV (Dhanya *et al.*, 2007).

DAC-ELISA method was found to be very efficient in detecting symptom less plant. The results revealed that positive plants recorded a mean absorbance (A405 values) which recorded more than twice the mean absorbance of negative control. Results of four plants showing different infectious chlorosis symptoms from insect proof net house recorded positive with little variation in absorbance value.

In general, higher titers of virus was recorded in positive plant followed by plant showing chlorotic lesion, mosaic with extreme distortion and reduction of leaf lamina recording absorbance value (Mali and Deshpande, 1975; Mali and Rajegore, 1979, Bouhida and Lockhart, 1990, Jones, 1991, Jones and Lockhart, 1993, Vishnoi *et al.*, 2013, Lepcha *et al.*, 2017).

Careful selection of virus-free planting material, use of resistant *Musa* varieties and farm sanitation may have been the reason for this discrepancy. This study contradicted the earlier hypothesis by Gauhl *et al.*, 1997 that local *Musa* cultivars were resistant to BSV or less prone to symptom expression. CMV was associated with BBMV infections that had CMV-like symptoms and also was associated with some, but not all, of the BBMV-infected banana plants showing characteristic bract mosaic symptoms.

Table.1 Data represents the DAC-ELISA results of pre-micropropagation for the selection of virus free explants.

	Banana Bract Mosaic Virus				Cucumber Mosaic Virus (CMV)			
		(B)	BrMV)					
Plant Sample	OD*	OD	OD for		OD for	OD	OD for	
	for	for	Positive	Result	Sample	for	Positive	Result
	Sample	Blank				Blank		
Plant Sample 1	0.897	0.428	1.556	Negative	0.105	0.453	1.542	Negative
Plant Sample 2	0.546	0.428	1.556	Negative	0.15	0.453	1.542	Negative
Plant Sample 3	0.595	0.428	1.556	Negative	0.197	0.453	1.542	Negative
Plant Sample 4	0.393	0.428	1.556	Negative	0.117	0.453	1.542	Negative
Plant Sample 5	0.306	0.428	1.556	Negative	0.145	0.453	1.542	Negative
Plant Sample 6	0.248	0.428	1.556	Negative	0.348	0.453	1.542	Negative
Plant Sample 7	0.413	0.428	1.556	Negative	0.094	0.453	1.542	Negative
Plant Sample 8	0.397	0.428	1.556	Negative	1.468	0.453	1.542	Positive
Plant Sample 9	0.121	0.428	1.556	Negative	0.12	0.453	1.542	Negative
Plant Sample 10	0.54	0.428	1.556	Negative	0.264	0.453	1.542	Negative
Plant Sample 11	0.714	0.428	1.556	Negative	0.107	0.453	1.542	Negative
Plant Sample 12	0.314	0.428	1.556	Negative	0.304	0.453	1.542	Negative
Plant Sample 13	0.828	0.438	1.033	Negative	0.52	0.258	0.709	Negative
Plant Sample 14	0.615	0.438	1.033	Negative	0.702	0.258	0.709	Negative
Plant Sample 15	0.726	0.438	1.033	Negative	0.465	0.258	0.709	Negative
Plant Sample 16	1.105	0.438	1.033	Positive	0.515	0.258	0.709	Negative
Plant Sample 17	1.127	0.438	1.033	Positive	0.583	0.258	0.709	Negative
Plant Sample 18	0.846	0.438	1.033	Positive	0.156	0.258	0.709	Negative
Plant Sample 19	1.603	0.438	1.033	Positive	1.58	0.258	0.709	Positive
Plant Sample 20	0.716	0.438	1.033	Negative	0.42	0.258	0.709	Negative
Plant Sample 21	0.312	0.438	1.033	Negative	0.041	0.258	0.709	Negative
Plant Sample 22	1.087	0.438	1.033	Positive	1.11	0.258	0.709	Positive
Plant Sample 23	0.878	0.438	1.033	Negative	0.212	0.258	0.709	Negative
Plant Sample 24	0.871	0.438	1.033	Negative	0.557	0.258	0.709	Negative
Plant Sample 25	0.246	0.238	1.382	Negative	0.207	0.289	0.681	Negative
Plant Sample 26	0.212	0.238	1.382	Negative	0.21	0.289	0.681	Negative
Plant Sample 27	0.213	0.238	1.382	Negative	0.23	0.289	0.681	Negative
Plant Sample 28	0.249	0.238	1.382	Negative	0.765	0.289	0.681	Negative
Plant Sample 29	0.208	0.238	1.382	Negative	0.586	0.289	0.681	Negative
Plant Sample 30	0.253	0.238	1.382	Negative	1.139	0.289	0.681	Positive
Plant Sample 31	0.215	0.238	1.382	Negative	0.54	0.289	0.681	Negative
Plant Sample 32	1.253	0.238	1.382	Positive	0.721	0.289	0.681	Negative
Plant Sample 33	0.23	0.238	1.382	Negative	0.758	0.289	0.681	Negative
Plant Sample 34	0.225	0.238	1.382	Negative	0.678	0.289	0.681	Negative
Plant Sample 35	0.196	0.238	1.382	Negative	0.504	0.289	0.681	Negative
Plant Sample 36	0.178	0.238	1.382	Negative	0.712	0.289	0.681	Negative
Plant Sample 37	0.587	0.22	1.07	Negative	0.647	0.276	0.958	Negative
Plant Sample 38	0.472	0.22	1.07	Negative	0.543	0.276	0.958	Negative
Plant Sample 39	1.713	0.22	1.07	Positive	0.817	0.276	0.958	Negative
Plant Sample 40	0.44	0.22	1.07	Negative	0.548	0.276	0.958	Negative

	Banana	Banana Bract Mosaic Virus (BBrMV)			Cucumber Mosaic Virus (CMV)				
Plant Sample	OD* for	OD for	OD for	Docult	OD for	OD for	OD for	Docult	
	Sample	Blank	Positive	Kesuit	Sample	Blank	Positive	Nesuit	
Plant Sample 41	0.471	0.22	1.07	Negative	0.592	0.276	0.958	Negative	
Plant Sample 42	0.412	0.22	1.07	Negative	0.528	0.276	0.958	Negative	
Plant Sample 43	0.358	0.22	1.07	Negative	1.422	0.276	0.958	Positive	
Plant Sample 44	1.419	0.22	1.07	Positive	0.683	0.276	0.958	Negative	
Plant Sample 45	0.472	0.22	1.07	Negative	0.483	0.276	0.958	Negative	
Plant Sample 46	0.481	0.22	1.07	Negative	0.623	0.276	0.958	Negative	
Plant Sample 47	0.442	0.22	1.07	Negative	0.502	0.276	0.958	Negative	
Plant Sample 48	0.484	0.22	1.07	Negative	0.686	0.276	0.958	Negative	
Plant Sample 49	1.422	0.343	1.702	Positive	1.581	0.339	0.984	Positive	
Plant Sample 50	0.551	0.343	1.702	Negative	0.804	0.339	0.984	Negative	
Plant Sample 51	0.482	0.343	1.702	Negative	0.857	0.339	0.984	Negative	
Plant Sample 52	0.373	0.343	1.702	Negative	0.562	0.339	0.984	Negative	
Plant Sample 53	1.479	0.343	1.702	Positive	0.653	0.339	0.984	Negative	
Plant Sample 54	0.458	0.343	1.702	Negative	0.652	0.339	0.984	Negative	
Plant Sample 55	0.504	0.343	1.702	Negative	0.748	0.339	0.984	Negative	
Plant Sample 56	0.448	0.343	1.702	Negative	0.721	0.339	0.984	Negative	
Plant Sample 57	0.542	0.343	1.702	Negative	0.649	0.339	0.984	Negative	
Plant Sample 58	0.419	0.343	1.702	Negative	0.641	0.339	0.984	Negative	
Plant Sample 59	0.396	0.343	1.702	Negative	0.567	0.339	0.984	Negative	
Plant Sample 60	0.591	0.343	1.702	Negative	1.031	0.339	0.984	Positive	
Plant Sample 61	0.553	0.474	1.417	Negative	1.875	0.336	0.915	Positive	
Plant Sample 62	0.63	0.474	1.417	Negative	0.691	0.336	0.915	Negative	
Plant Sample 63	0.516	0.474	1.417	Negative	0.347	0.336	0.915	Negative	
Plant Sample 64	0.341	0.474	1.417	Negative	0.499	0.336	0.915	Negative	
Plant Sample 65	0.553	0.474	1.417	Negative	0.812	0.336	0.915	Negative	
Plant Sample 66	0.675	0.474	1.417	Negative	0.78	0.336	0.915	Negative	
Plant Sample 67	0.395	0.474	1.417	Negative	0.603	0.336	0.915	Negative	
Plant Sample 68	0.31	0.474	1.417	Negative	0.518	0.336	0.915	Negative	
Plant Sample 69	0.539	0.474	1.417	Negative	0.775	0.336	0.915	Negative	
Plant Sample 70	0.311	0.474	1.417	Negative	0.603	0.336	0.915	Negative	
Plant Sample 71	1.429	0.474	1.417	Positive	0.652	0.336	0.915	Negative	
Plant Sample 72	0.323	0.474	1.417	Negative	1.521	0.336	0.915	Positive	
Plant Sample 73	0.443	0.451	1.287	Negative	1.536	0.362	0.819	Positive	
Plant Sample 74	0.596	0.451	1.287	Negative	0.664	0.362	0.819	Negative	
Plant Sample 75	0.561	0.451	1.287	Negative	0.819	0.362	0.819	Negative	
Plant Sample 76	0.569	0.451	1.287	Negative	0.826	0.362	0.819	Negative	
Plant Sample 77	0.588	0.451	1.287	Negative	0.747	0.362	0.819	Negative	
Plant Sample 78	0.57	0.451	1.287	Negative	0.597	0.362	0.819	Negative	
Plant Sample 79	0.515	0.451	1.287	Negative	0.654	0.362	0.819	Negative	
Plant Sample 80	1.276	0.451	1.287	Positive	0.845	0.362	0.819	Negative	

	Banana Bract Mosaic Virus (BBrMV)			ıs (BBrMV)	Cucumber Mosaic Virus (CMV)				
Plant Sample	OD*	OD for	OD for		OD for	OD for	OD for		
	for	Blank	Positiv	Result	Sampl	Blank	Positiv	Result	
	Sample		e		e		e		
Plant Sample 81	1.31	0.451	1.287	Positive	0.905	0.362	0.819	Negative	
Plant Sample 82	0.854	0.451	1.287	Negative	0.714	0.362	0.819	Negative	
Plant Sample 83	1.03	0.451	1.287	Positive	0.919	0.362	0.819	Negative	
Plant Sample 84	0.976	0.451	1.287	Negative	0.84	0.362	0.819	Negative	
Plant Sample 85	0.664	0.474	1.417	Negative	0.875	0.336	0.83	Negative	
Plant Sample 86	0.636	0.474	1.417	Negative	1.691	0.336	0.83	Positive	
Plant Sample 87	1.586	0.474	1.417	Positive	0.347	0.336	0.83	Negative	
Plant Sample 88	0.507	0.474	1.417	Negative	0.499	0.336	0.83	Negative	
Plant Sample 89	0.813	0.474	1.417	Negative	0.812	0.336	0.83	Negative	
Plant Sample 90	0.816	0.474	1.417	Negative	1.78	0.336	0.83	Positive	
Plant Sample 91	1.608	0.474	1.417	Positive	0.603	0.336	0.83	Negative	
Plant Sample 92	0.553	0.474	1.417	Negative	1.518	0.336	0.83	Positive	
Plant Sample 93	0.732	0.474	1.417	Negative	0.775	0.336	0.83	Negative	
Plant Sample 94	0.55	0.474	1.417	Negative	0.603	0.336	0.83	Negative	
Plant Sample 95	0.728	0.474	1.417	Negative	0.652	0.336	0.83	Negative	
Plant Sample 96	0.59	0.474	1.417	Negative	0.521	0.336	0.83	Negative	
Plant Sample 97	1.246	0.238	1.382	Positive	0.207	0.289	0.681	Negative	
Plant Sample 98	0.212	0.238	1.382	Negative	0.21	0.289	0.681	Negative	
Plant Sample 99	0.213	0.238	1.382	Negative	0.23	0.289	0.681	Negative	
Plant Sample 100	1.249	0.238	1.382	Positive	0.765	0.289	0.681	Negative	
Plant Sample 101	0.208	0.238	1.382	Negative	0.586	0.289	0.681	Negative	
Plant Sample 102	0.253	0.238	1.382	Negative	0.139	0.289	0.681	Negative	
Plant Sample 103	0.215	0.238	1.382	Negative	0.54	0.289	0.681	Negative	
Plant Sample 104	0.253	0.238	1.382	Negative	0.721	0.289	0.681	Negative	
Plant Sample 105	0.23	0.238	1.382	Negative	0.758	0.289	0.681	Negative	
Plant Sample 106	0.225	0.238	1.382	Negative	1.678	0.289	0.681	Positive	
Plant Sample 107	0.196	0.238	1.382	Negative	1.504	0.289	0.681	Positive	
Plant Sample 108	0.178	0.238	1.382	Negative	0.712	0.289	0.681	Negative	
Plant Sample 109	0.516	0.252	1.434	Negative	1.297	0.237	0.66	Positive	
Plant Sample 110	0.528	0.252	1.434	Negative	0.331	0.237	0.66	Negative	
Plant Sample 111	1.45	0.252	1.434	Positive	0.325	0.237	0.66	Negative	
Plant Sample 112	0.652	0.252	1.434	Negative	0.604	0.237	0.66	Negative	
Plant Sample 113	0.592	0.252	1.434	Negative	0.389	0.237	0.66	Negative	
Plant Sample 114	0.517	0.252	1.434	Negative	0.315	0.237	0.66	Negative	
Plant Sample 115	0.418	0.252	1.434	Negative	0.302	0.237	0.66	Negative	
Plant Sample 116	0.468	0.252	1.434	Negative	0.317	0.237	0.66	Negative	
Plant Sample 117	0.487	0.252	1.434	Negative	0.266	0.237	0.66	Negative	
Plant Sample 118	0.455	0.252	1.434	Negative	0.279	0.237	0.66	Negative	
Plant Sample 119	0.417	0.252	1.434	Negative	0.267	0.237	0.66	Negative	
Plant Sample 120	0.443	0.252	1.434	Negative	0.282	0.237	0.66	Negative	

	Ban	ana Brac (BB	ct Mosaic ` (rMV)	Virus	Cucumber Mosaic Virus (CMV)					
Plant Sample	OD* for Sample	OD for Blank	OD for Positive	Result	OD for Sample	OD for Blank	OD for Positive	Result		
Plant Sample 1	0.445	0.234	1.364	Negative	0.311	0.224	0.659	Negative		
Plant Sample 2	0.431	0.234	1.364	Negative	0.276	0.224	0.659	Negative		
Plant Sample 3	0.554	0.234	1.364	Negative	0.297	0.224	0.659	Negative		
Plant Sample 4	0.532	0.234	1.364	Negative	0.290	0.224	0.659	Negative		
Plant Sample 5	0.463	0.234	1.364	Negative	0.306	0.224	0.659	Negative		
Plant Sample 6	0.577	0.234	1.364	Negative	0.355	0.224	0.659	Negative		
Plant Sample 7	0.439	0.234	1.364	Negative	0.282	0.224	0.659	Negative		
Plant Sample 8	0.438	0.234	1.364	Negative	0.288	0.224	0.659	Negative		
Plant Sample 9	0.502	0.234	1.364	Negative	0.303	0.224	0.659	Negative		
Plant Sample 10	0.560	0.234	1.364	Negative	0.354	0.224	0.659	Negative		
Plant Sample 11	0.544	0.234	1.364	Negative	0.300	0.224	0.659	Negative		
Plant Sample 12	0.502	0.234	1.364	Negative	0.310	0.224	0.659	Negative		
Plant Sample 13	0.582	0.257	1.984	Negative	0.369	0.254	0.79	Negative		
Plant Sample 14	0.531	0.257	1.984	Negative	0.325	0.254	0.79	Negative		
Plant Sample 15	0.561	0.257	1.984	Negative	0.323	0.254	0.79	Negative		
Plant Sample 16	0.631	0.257	1.984	Negative	0.355	0.254	0.79	Negative		
Plant Sample 17	0.649	0.257	1.984	Negative	0.415	0.254	0.79	Negative		
Plant Sample 18	0.518	0.257	1.984	Negative	0.336	0.254	0.79	Negative		
Plant Sample 19	0.538	0.257	1.984	Negative	0.301	0.254	0.79	Negative		
Plant Sample 20	0.602	0.257	1.984	Negative	0.321	0.254	0.79	Negative		
Plant Sample 21	0.754	0.257	1.984	Negative	0.455	0.254	0.79	Negative		
Plant Sample 22	0.584	0.257	1.984	Negative	0.385	0.254	0.79	Negative		
Plant Sample 23	0.641	0.257	1.984	Negative	0.331	0.254	0.79	Negative		
Plant Sample 24	0.560	0.257	1.984	Negative	0.333	0.254	0.79	Negative		
Plant Sample 25	0.240	0.252	1.434	Negative	0.209	0.237	0.66	Negative		
Plant Sample 26	0.192	0.252	1.434	Negative	0.193	0.237	0.66	Negative		
Plant Sample 27	0.561	0.252	1.434	Negative	0.323	0.237	0.66	Negative		
Plant Sample 28	0.631	0.252	1.434	Negative	0.355	0.237	0.66	Negative		
Plant Sample 29	0.649	0.252	1.434	Negative	0.415	0.237	0.66	Negative		
Plant Sample 30	0.518	0.252	1.434	Negative	0.336	0.237	0.66	Negative		
Plant Sample 31	0.538	0.252	1.434	Negative	0.301	0.237	0.66	Negative		
Plant Sample 32	0.584	0.252	1.434	Negative	0.385	0.237	0.66	Negative		
Plant Sample 33	0.463	0.252	1.434	Negative	0.306	0.237	0.66	Negative		
Plant Sample 34	0.577	0.252	1.434	Negative	0.355	0.237	0.66	Negative		

Table.2 Data represents the DAC-ELISA results of post-micropropagation for the selection of virus free plantlets for planting.

Int.J.Curr.Microbiol.App.Sci (2020) Special Issue-11: 2360-2373

	Banana	Bract Mos	saic Virus	(BBrMV)	Cucumber Mosaic Virus (CMV)				
Plant Sample	OD* for	OD for	OD for	Result	OD for	OD for	OD for	Result	
	Sample	Blank	Positive	Ktsuit	Sample	Blank	Positive	Kesut	
Plant Sample 35	0.439	0.252	1.434	Negative	0.282	0.237	0.66	Negative	
Plant Sample 36	0.438	0.252	1.434	Negative	0.288	0.237	0.66	Negative	
Plant Sample 37	0.582	0.257	1.984	Negative	0.369	0.254	0.79	Negative	
Plant Sample 38	0.531	0.257	1.984	Negative	0.325	0.254	0.79	Negative	
Plant Sample 39	0.561	0.257	1.984	Negative	0.323	0.254	0.79	Negative	
Plant Sample 40	0.631	0.257	1.984	Negative	0.355	0.254	0.79	Negative	
Plant Sample 41	0.649	0.257	1.984	Negative	0.415	0.254	0.79	Negative	
Plant Sample 42	0.518	0.257	1.984	Negative	0.336	0.254	0.79	Negative	
Plant Sample 43	0.538	0.257	1.984	Negative	0.301	0.254	0.79	Negative	
Plant Sample 44	0.602	0.257	1.984	Negative	0.321	0.254	0.79	Negative	
Plant Sample 45	0.754	0.257	1.984	Negative	0.455	0.254	0.79	Negative	
Plant Sample 46	0.584	0.257	1.984	Negative	0.385	0.254	0.79	Negative	
Plant Sample 47	0.641	0.257	1.984	Negative	0.331	0.254	0.79	Negative	
Plant Sample 48	0.56	0.257	1.984	Negative	0.333	0.254	0.79	Negative	
Plant Sample 49	0.246	0.238	1.382	Negative	0.207	0.289	0.681	Negative	
Plant Sample 50	0.212	0.238	1.382	Negative	0.21	0.289	0.681	Negative	
Plant Sample 51	0.213	0.238	1.382	Negative	0.23	0.289	0.681	Negative	
Plant Sample 52	0.249	0.238	1.382	Negative	0.765	0.289	0.681	Negative	
Plant Sample 53	0.208	0.238	1.382	Negative	0.586	0.289	0.681	Negative	
Plant Sample 54	0.253	0.238	1.382	Negative	0.139	0.289	0.681	Negative	
Plant Sample 55	0.215	0.238	1.382	Negative	0.54	0.289	0.681	Negative	
Plant Sample 56	0.253	0.238	1.382	Negative	0.721	0.289	0.681	Negative	
Plant Sample 57	0.23	0.238	1.382	Negative	0.758	0.289	0.681	Negative	
Plant Sample 58	0.225	0.238	1.382	Negative	0.678	0.289	0.681	Negative	
Plant Sample 59	0.196	0.238	1.382	Negative	0.504	0.289	0.681	Negative	
Plant Sample 60	0.178	0.238	1.382	Negative	0.712	0.289	0.681	Negative	
Plant Sample 61	0.418	0.257	1.984	Negative	0.302	0.254	0.797	Negative	
Plant Sample 62	0.468	0.257	1.984	Negative	0.317	0.254	0.797	Negative	
Plant Sample 63	0.487	0.257	1.984	Negative	0.266	0.254	0.797	Negative	
Plant Sample 64	0.455	0.257	1.984	Negative	0.279	0.254	0.797	Negative	
Plant Sample 65	0.417	0.257	1.984	Negative	0.267	0.254	0.797	Negative	
Plant Sample 66	0.443	0.257	1.984	Negative	0.282	0.254	0.797	Negative	
Plant Sample 67	0.546	0.257	1.984	Negative	0.15	0.254	0.797	Negative	
Plant Sample 68	0.595	0.257	1.984	Negative	0.197	0.254	0.797	Negative	
Plant Sample 69	0.393	0.257	1.984	Negative	0.117	0.254	0.797	Negative	
Plant Sample 70	0.306	0.257	1.984	Negative	0.145	0.254	0.797	Negative	
Plant Sample 71	0.248	0.257	1.984	Negative	0.348	0.254	0.797	Negative	

	Ban	ana Bra (B	ct Mosaic BrMV)	e Virus	Cucumber Mosaic Virus (CMV)			
Plant Sample	OD* for Sample	OD for Blank	OD for Positive	Result	OD for Sample	OD for Blank	OD for Positive	Result
Plant Sample 72	0.413	0.257	1.984	Negative	0.094	0.254	0.797	Negative
Plant Sample 73	0.397	0.234	1.364	Negative	0.168	0.224	0.656	Negative
Plant Sample 74	0.121	0.234	1.364	Negative	0.12	0.224	0.656	Negative
Plant Sample 75	0.54	0.234	1.364	Negative	0.264	0.224	0.656	Negative
Plant Sample 76	0.714	0.234	1.364	Negative	0.107	0.224	0.656	Negative
Plant Sample 77	0.314	0.234	1.364	Negative	0.304	0.224	0.656	Negative
Plant Sample 78	0.44	0.234	1.364	Negative	0.548	0.224	0.656	Negative
Plant Sample 79	0.471	0.234	1.364	Negative	0.592	0.224	0.656	Negative
Plant Sample 80	0.412	0.234	1.364	Negative	0.228	0.224	0.656	Negative
Plant Sample 81	0.358	0.234	1.364	Negative	0.222	0.224	0.656	Negative
Plant Sample 82	0.419	0.234	1.364	Negative	0.283	0.224	0.656	Negative
Plant Sample 83	0.472	0.234	1.364	Negative	0.483	0.224	0.656	Negative
Plant Sample 84	0.481	0.234	1.364	Negative	0.223	0.224	0.656	Negative
Plant Sample 85	0.442	0.257	1.984	Negative	0.502	0.254	0.797	Negative
Plant Sample 86	0.484	0.257	1.984	Negative	0.286	0.254	0.797	Negative
Plant Sample 87	0.561	0.257	1.984	Negative	0.323	0.254	0.797	Negative
Plant Sample 88	0.631	0.257	1.984	Negative	0.355	0.254	0.797	Negative
Plant Sample 89	0.649	0.257	1.984	Negative	0.415	0.254	0.797	Negative
Plant Sample 90	0.518	0.257	1.984	Negative	0.336	0.254	0.797	Negative
Plant Sample 91	0.538	0.257	1.984	Negative	0.301	0.254	0.797	Negative
Plant Sample 92	0.602	0.257	1.984	Negative	0.321	0.254	0.797	Negative
Plant Sample 93	0.754	0.257	1.984	Negative	0.455	0.254	0.797	Negative
Plant Sample 94	0.584	0.257	1.984	Negative	0.385	0.254	0.797	Negative
Plant Sample 95	0.641	0.257	1.984	Negative	0.331	0.254	0.797	Negative
Plant Sample 96	0.56	0.257	1.984	Negative	0.333	0.254	0.797	Negative
Plant Sample 97	0.24	0.252	1.434	Negative	0.209	0.237	0.66	Negative
Plant Sample 98	0.192	0.252	1.434	Negative	0.193	0.237	0.66	Negative
Plant Sample 99	0.561	0.252	1.434	Negative	0.323	0.237	0.66	Negative
Plant Sample 100	0.631	0.252	1.434	Negative	0.355	0.237	0.66	Negative
Plant Sample 101	0.649	0.252	1.434	Negative	0.415	0.237	0.66	Negative
Plant Sample 102	0.518	0.252	1.434	Negative	0.336	0.237	0.66	Negative
Plant Sample 103	0.538	0.252	1.434	Negative	0.301	0.237	0.66	Negative
Plant Sample 104	0.584	0.252	1.434	Negative	0.385	0.237	0.66	Negative
Plant Sample 105	0.463	0.252	1.434	Negative	0.306	0.237	0.66	Negative
Plant Sample 106	0.577	0.252	1.434	Negative	0.355	0.237	0.66	Negative

Int.J.Curr.Microbiol.App.Sci (2020) Special Issue-11: 2360-2373

0.439	0.252	1.434	Negative	0.282	0.237	0.66	Negative
0.438	0.252	1.434	Negative	0.288	0.237	0.66	Negative
0.582	0.252	1.434	Negative	0.369	0.237	0.66	Negative
0.531	0.252	1.434	Negative	0.325	0.237	0.66	Negative
0.246	0.238	1.382	Negative	0.302	0.254	0.797	Negative
0.212	0.238	1.382	Negative	0.317	0.254	0.797	Negative
0.213	0.238	1.382	Negative	0.266	0.254	0.797	Negative
0.249	0.238	1.382	Negative	0.279	0.254	0.797	Negative
0.208	0.238	1.382	Negative	0.267	0.254	0.797	Negative
0.253	0.238	1.382	Negative	0.282	0.254	0.797	Negative
0.215	0.238	1.382	Negative	0.150	0.254	0.797	Negative
0.253	0.238	1.382	Negative	0.197	0.254	0.797	Negative
0.230	0.238	1.382	Negative	0.117	0.254	0.797	Negative
0.225	0.238	1.382	Negative	0.145	0.254	0.797	Negative
	0.439 0.438 0.582 0.531 0.246 0.212 0.213 0.249 0.208 0.253 0.253 0.215 0.253 0.230 0.225	0.4390.2520.4380.2520.5820.2520.5310.2520.2460.2380.2120.2380.2130.2380.2080.2380.2530.2380.2530.2380.2530.2380.2530.2380.2530.2380.2530.2380.2250.238	0.4390.2521.4340.4380.2521.4340.5820.2521.4340.5310.2521.4340.2460.2381.3820.2120.2381.3820.2130.2381.3820.2490.2381.3820.2080.2381.3820.2530.2381.3820.2150.2381.3820.2530.2381.3820.2530.2381.3820.2530.2381.3820.2550.2381.3820.2250.2381.382	0.4390.2521.434Negative0.4380.2521.434Negative0.5820.2521.434Negative0.5310.2521.434Negative0.2460.2381.382Negative0.2120.2381.382Negative0.2130.2381.382Negative0.2490.2381.382Negative0.2080.2381.382Negative0.2030.2381.382Negative0.2150.2381.382Negative0.2530.2381.382Negative0.2530.2381.382Negative0.2530.2381.382Negative0.2530.2381.382Negative0.2550.2381.382Negative0.2250.2381.382Negative	0.4390.2521.434Negative0.2820.4380.2521.434Negative0.2880.5820.2521.434Negative0.3690.5310.2521.434Negative0.3250.2460.2381.382Negative0.3020.2120.2381.382Negative0.3170.2130.2381.382Negative0.2660.2490.2381.382Negative0.2670.2080.2381.382Negative0.2670.2030.2381.382Negative0.2670.2530.2381.382Negative0.2670.2530.2381.382Negative0.1500.2530.2381.382Negative0.1970.2300.2381.382Negative0.1170.2250.2381.382Negative0.145	0.4390.2521.434Negative0.2820.2370.4380.2521.434Negative0.2880.2370.5820.2521.434Negative0.3690.2370.5310.2521.434Negative0.3250.2370.2460.2381.382Negative0.3020.2540.2120.2381.382Negative0.3170.2540.2130.2381.382Negative0.2660.2540.2490.2381.382Negative0.2670.2540.2080.2381.382Negative0.2670.2540.2150.2381.382Negative0.2670.2540.2080.2381.382Negative0.2670.2540.2530.2381.382Negative0.1500.2540.2530.2381.382Negative0.1970.2540.2540.2300.2381.382Negative0.1170.2540.2550.2381.382Negative0.1450.254	0.4390.2521.434Negative0.2820.2370.660.4380.2521.434Negative0.2880.2370.660.5820.2521.434Negative0.3690.2370.660.5310.2521.434Negative0.3250.2370.660.2460.2381.382Negative0.3020.2540.7970.2120.2381.382Negative0.3170.2540.7970.2130.2381.382Negative0.2660.2540.7970.2490.2381.382Negative0.2670.2540.7970.2080.2381.382Negative0.2670.2540.7970.2150.2381.382Negative0.2670.2540.7970.2080.2381.382Negative0.2670.2540.7970.2150.2381.382Negative0.1500.2540.7970.2530.2381.382Negative0.1170.2540.7970.2540.2381.382Negative0.1970.2540.7970.2530.2381.382Negative0.1170.2540.7970.2300.2381.382Negative0.1450.2540.7970.2250.2381.382Negative0.1450.2540.797

*OD - Optical Density

Plate 4.2: ELISA plate showing results of banana mother plant (cv. Kovvur Bontha (ABB)) samples for Cucumber Mosaic Virus (CMV) using DAC-ELISA. Samples showing positive results (yellow wells) for CMV: (A) white to creamish discoloration of leaves, an initial symptom of CMV (B) Reddish discoloration of pseudostem, an initial symptom of CMV

It appears, therefore, that CMV is not essential for the development of the characteristic BBMV symptoms. CMV may mask the development of the characteristic symptoms of BBMV in some banana cultivars, or alternatively, the CMV-like symptoms observed in the Tiruchchirappalli region may be due to a different strain of BBMV. CMV and banana streak badna virus can cause a wide range of symptoms in banana, depending on the banana cultivar, virus strain, and environmental conditions (Jones and Lockhart, 1993, Hu *et al.*, 1995, Singh *et al.*, 1995). Therefore, the mild mosaic symptoms on the younger leaves of BBMV-infected bananas (Munez, 1992) could be confused with the mosaic symptoms produced by CMV on infected bananas (Frison and Putter, 1989).

In this experiment we concluded that the DAC-ELISA was the effective and economical method to detect and eradicate the viruses like BBrMV and CMV from mother plants to its progenies which are propagated through micropropagation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Informed consent

Informed consent was not applicable to this article since no information regarding individual participants was included in the study.

References

Ali, S, Akhtar, M, Singh, K.S. and Naqvi, Q.A. 2012. RT-PCR and CP gene based molecular characterization of a cucumber mosaic cucumo virus from Aligarh, UP, India. Agriculture Science. 3(8):971-978.

- Bouhida, M. and Lockhart, B.E. 1990. Increase in importance of *Cucumber mosaic virus* infection in green house grown bananas in Morocco. *Phytopathology*. 80:981-981.
- Capoor, S.P. and Verma, P.M. 1968.Investigations on a mosaic disease of Banana in the Deccan. *Indian Phytopathology*. 21(1):135.
- Clark, M.F, and Adams, A.N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. *Journal of General Virology*. 34:475-483.
- M.K, Roajagopalan, Dhanya, Β. Umamaheshwaran, K. and Ayisha, R. Comparison 2007. of detection method for banana bract mosaic virus in banana. World journal of agricultural science, 3(5): 659-662.
- Dheepa, R, and Paranjothi, S. 2010. Transmission of *Cucumber mosaic virus* (CMV) infecting banana by aphid and mechanical methods. *Emirates Journal of Food and Agriculture*, 22(2):117-129.
- Frison, E. A., and Putter, C. A. J. 1989.
 FAO/IBPGR Technical Guidelines for the Safe Movement of *Musa* Germplasm. Food and Agriculture Organisation of the United Nations, Rome/International Board for Plant Genetic Resources, Rome.
- Gauhl, F. Gauhl, P.C. and Hughes, J.D.A. 1997. First report on *banana streakBadna virus* in plantain landraces in Southern Cameroon, Central Africa. *PlantDisease*. 81: 13351341.
- Hu, J.S, Li, P.H, Barry, K. and Wang, M. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two cucumber mosaic virus isolates infecting banana in Hawaii. *Plant Diseases.* 79:902-906.

- Jones, D. R. and Lockhart, B.E.L. 1993. Musa Disease Fact Sheet 1: Banana Streak Disease.
- International Network for the Improvement of Banana and Plantain, Montpellier, France.
- Jones, D.R. 1991. Status of banana disease in Australia. In: Valmayor R.V. (ed.), Banana Diseases in Asia and the Pacific. INIBAP/ASPNET, Los Banos, Philippines, 21-37.
- Jones, D.R. and Lockhart, B.E.L. 1993. Banana streak disease. In: Musa Disease Fact Sheet NO. 1. INI-BAP, Montpellier, France, 27.
- Joshi, D.M. snd Joshi, H.U. 1976. Occurrence of banana mosaic in South Gujarat area and its host-range. *Gujarat Agriculture University Research Journal*. 1(2):105-110.
- Kamat, M.. and Patel, M.K. 1951. Notes on two important plant diseases in Bombay State. *Plant Protection Bill*. 3:16-19.
- Khan, S, Jan, A.T, Aquil, B. and Qazi, M.R.H. 2011. Coat protein gene based characterization of *Cucumber mosaic virus* isolates infecting banana in India. *Journal of Phytopathology*. 3(2):94-101.
- Khan, S, Jan, A.T, Mandal, B. and Rizwanul, Q.M. 2012. Immunodiagnostics of *Cucumber mosaic virus* using antisera developed against recombinant coat protein. Archives of Phytopathology Plant Protection. 45(5):561-569.
- Kiranmai, G, Sreenivasulu, P. and Nayudu, M.V. 1996. Comparison of 3 different tests for detection of cucumber mosaic cucumovirus in banana (*Musa-paradisiaca*). *Current Science*. 71:764-767.
- Kouadio, K.T, Clerck, C, Agneroh, T.A, Parisi, O, Lepoivre, P and Jijakli, M.H. 2014. Occurrence of satellite RNAs associated with *Cucumber*

mosaic virus isolated from banana (Musa sp.) in Ivory Coast. New Disease Reports. 30:24.

- Lepcha, S.S, Chaudhary, K. and Pratap, D. 2017. First report of *Cucumber mosaic* virus infecting Musa×paradisiaca cv. Chini Champa in Sikkim, Northeast India. *Plant Diseases*. 101(5):844.
- Mali, V.R. and Deshpande, G.D. 1975. Banana heart rot disease in Marathwada. *Indian Journal of Mycology and Plantpathology*. 5(1):28-34.
- Mali, V.R. and Rajegore, S.B. 1980.A *Cucumber mosaic virus* disease of banana in India. *Journal of Phytopathology*. 98(2):127-136.
- Munez, A.R. 1992. Symptomatology, transmission and purification of banana bract mosaic virus (BBMV) in 'Giant Cavendish' banana. M.S. thesis. University of the Philippines, Los Baños.
- Nelson, S.C, Ploetz, R.C. and Kepler, A.K. 2006. *Musa* species (bananas and plantains). *In*
- Elevitch, C.R (ed.). Species Profiles for Pacific Island Agroforestry. Holualoa, Hawai'i:
- Permanent Agriculture Resources (PAR). Retrieved January 10, 2013.
- NHB.2018.http://nhb.gov.in/statistics/Publica tion/Horticulture%20Statistics%20at %20a%20 Glance-2018.pdf
- Reddy, M.K, Vani, A, Selvarajan, R. and Singh, H.P. 1996. Immunological and Molecular diagnosis of banana bract mosaic virus. Banana-Improvement, production and Utilization. In proceedings of the Conference of Challenges for Banana Production and Utilization in 21st century (Eds. H.P. Singh and K.L. Chadha) AIPUB, NRCB, Trichy, India. Pp. 381-383.

Selvarajan R (2000). NRCB Annual Report.

- Selvarajan, R, Balasubramanian, V, Sheeba, M.M, Raj, M.R. and Mustaffa, M.M. 2011. Virusindexing technology for production of quality banana planting material: a boon to the tissue-culture industry and banana growers in India. *Acta Horticulture*. 897:463-469.
- Selvarajan, R. and Balasubramanian, V. 2014. Banana viruses. In: RaoGP (ed) Characterization diagnosis & management of plant viruses. Studium Press, Houston, 109–124.
- Singh, S.J., Selvarajan, R. and Singh, H.P. 1996. Detection of bract mosaic virus (kokkan disease) electron by microscopy and serology. In: Singh HP (eds) Banana improvement, production utilization. and Proceedings of Conference in AIPUB, Tiruchirappali, India, pp 381–383.
- Singh, Z, Jones, R.A.C. and Jones, M.G.K. 1995. Identification of cucumber mosaic virus subgroup I isolates from

banana plants affected by infectious chlorosis disease using RT-PCR. *Plant Diseases*. 79:713-716.

- Teycheney, P.Y, Marais, A., Savanella, D.L, Dulucq, M.J. and Candresse, T. 2005.
 Molecular characterization of banana virus X (BVX) a novel member of Flexiviridae family. *Archive Virology*. 150: 1715-1727.
- Thomas, J.E, Geering, A.D.W, Gambley, C.F, Kessling, A.F. and White, M. 2001. Purification, properties and diagnosis of banana bract mosaic potyvirus and its distinction from abaca mosaic *potyvirus*. *Phytopathology*, 87: 698–705.
- Vishnoi, R, Kumar, S. and Raj, K.S. 2013. Molecular characterization of a *Cucumber mosaic virus* isolate associated with mosaic disease of banana in India. *Phytoparasitica*. 41: 545-555.